Sixth Semester B.E. Degree Examination, June/July 2016 Finite element method

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.
2. Missing data may suitably be assumed.

PART - A

1 a. Derive the equilibrium equations of a three dimensional body subjected to a body force.

b. Explain the general description (steps) of FEM. (08 Marks)
(06 Marks)

c. Briefly explain the types of elements based on geometry. (06 Marks)

2 a. State principle of virtual work and principle of minimum potential energy. (04 Marks)

b. Calculate an expression for deflection in a simply supported beam under uniformly distributed load P_o ever entire span of length L using Rayleigh Ritz method. (10 Marks)

c. What are the steps involved in Galerkin's method to find out deflection? (06 Marks)

3 a. Explain two dimensional Pascal's triangle. (05 Marks)

- b. Define interpolation polynomial, simplex, complex and multiplex elements and cubic element. (05 Marks)
- c. Find the shape functions of a CST element and plot the same. (10 Marks)
- a. Fig Q4(a) shows a thin plate of uniform thickness of 1 mm, weight density = 76.6×10⁻⁶ N/mm³ and subjected to point load of 1kN at its midpoint. Take E = 200 GPa. Evaluate nodal displacement, stresses, and reactions. Using elimination techniques. (10 Marks)

b. Find the nodal displacement, stresses and reactions of a Fig. Q4(b). Using penalty approach method. (10 Marks)

PART - B

Obtain the shape functions of quadratic bar element.

(10 Marks)

(10 Marks)

Use two point Gauss quadrature to evaluate the integral $I = \int (2^{\xi} - \xi) d\xi$.

Derive an expression for stiffness matrix of a 2 noded truss element. (10 Marks) Determine the nodal displacements in the truss segments subjected to concentrated load as shown in Fig Q6 (b). Take E = 70GPa A = 0.01 m². (10 Marks)

Obtain Hermite shape functions of a beam element.

(10 Marks)

Find the deflection at the tip and the support reaction of a cantilever shown in Fig. 7(b).

(10 Marks)

- Obtain the governing equation of a one dimension heat conduction. (10 Marks)
 - Calculate the temperature distribution in a one dimensional fin with the physical properties shown in Fig 8(b). There is a uniform generation of heat inside the wall of $\overline{Q} = 400 \text{ W/m}^3$.

Fig. Q8(b)

(10 Marks)